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A model for the freezing of binary colloidal hard spheres 

P Bartlett 
School of Chemistry, Bristol University, Bristol BSR tTS, U K  

Received 29 January 1990 

Abstract. Phase boundaries are calculated for the freezing of a binary mixture of colloidal 
hard spheres which are assumed to be immiscible in a single solid phase. Results are reported 
for mixtures of diameter ratio y = 0.85 and 0.65. It is shown that the fluid phase is stable to 
a higher density in the binary mixture than the monodisperse system. The maximum fluid 
freezing density occurs at the binary eutectic in suspensions rich in small spheres. The 
proportion of small spheres in the eutectic fluid increases sharply with decreasing diameter 
ratio. At  phase coexistence the hard sphere crystal iscompressed relative to the monodisperse 
system. The increase in density is most pronounced for the crystal of large spheres. The hard 
sphere phase behaviour is described at constant volume which enables a direct comparison 
with experimental measurements on colloidal systems to be made. 

1. Introduction 

In recent years it has become widely recognised that colloidal suspensions demonstrate 
a range of equilibrium phase behaviour which is reminiscent of simpler one phase atomic 
and molecular liquids [l]. With a careful control of the interparticle potential, colloidal 
systems can, for example, show both gas-liquid and liquid-solid phase transitions [ 2 ] .  
In suspensions of (uncharged) sterically stabilised colloids the interparticle potential is 
steeply repulsive and has been approximated by a hard sphere interaction [3,4]. By 
analogy with the phase behaviour expected for hard spheres of uniform size, and 
determined largely by numerical simulation [5], suspensions of volume fraction E > Ef = 
0.494, the freezing density, are observed to freeze into a translationally ordered crys- 
talline phase. For suspensions of volume fraction 3 Em = 0.545, the melting con- 
centration, the equilibrium colloid phase is crystalline. The crystal structure, revealed 
by light scattering, may be physically realised by the irregular stacking of hexagonally 
packed layers of particles [6]. The degree of randomness in this structure has been 
correlated with the rate of crystal nucleation and growth. Colloidal crystals grown slowly, 
while still containing many stacking faults, show a tendency towards a face centred cubic 
sequence of layers. At volume fractions intermediate between the freezing and melting 
concentrations, Er < < e,, experiments demonstrate that colloidal fluid (of density cf) 
coexists with a crystalline phase (of density E , ) .  In concentrated suspensions, 
E > Eg = 0.58, a glass transition occurs [7] and suspensions prepared at or above this 
density remain amorphous. 

If colloidal spheres of two different diameters are mixed, the situation becomes much 
more complicated. Although colloidal hard spheres are expected to be completely 
miscible in a single fluid phase [8], a binary mixture of spheres can, in principle, exist in 
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Table 1. The maximum diameter ratio of the sphere that can fit into various interstitial sites 
in a FCC or HCP lattice occupied by larger spheres at a volume fraction 5. At 5 = 0.7405 the 
larger spheres are closepacked. The maximum diameters at E = 0.545, the single component 
hard sphere melting density [SI, illustrate the extent of the expansion of the interstitial sites 
at melting. 

Volume fraction 
5 Octahedral Tetrahedral Triangular 

0.7405 0.414 0.225 0.155 
0.545 0.566 0.356 0.279 

any one of a wide variety of solid phases. We shall distinguish between three distinct 
classes of crystalline solids: (i) a substitutionally disordered binary crystal in which each 
colloidal component is distributed largely at random on a common lattice, (ii) an ordered 
binary crystal in which each component lies on a crystalline sublattice, and finally (iii) a 
pure component crystal. The relative stability of these phases depends both upon the 
thermodynamic variables, which for colloidal systems are most conveniently chosen as 
the overall volume fraction g and the number fraction x1  of species 1, as well as the 
relative hard sphere diameter ratio y = cr2/ul (with the larger sphere labelled as species 
1 so y s 1). The stability of the face centred cubic substitutionally disordered phase has 
been explored in the recent work of Barrat et a1 [9] using approximate density functional 
methods. In particular these calculations predict that mixtures of hard spheres of dia- 
meter ratio y < 0.92 are no longer miscible in all proportions in a single solid phase. 
Freezing occurs with segregation into a crystal containing predominantly small spheres 
and a second crystalline phase rich in large spheres. As the size ratio is lowered still 
further, towards y = 0.85, the solubility of large spheres in the crystal of smaller spheres 
shrinks to zero. The calculation however predicts that, at y = 0.85, the crystal rich in 
large spheres still contains an appreciable fraction (up to 25% by number) of small 
spheres. For y < 0.85, thesubstitutional crystal wasreported to be mechanically unstable 
over a wide range of intermediate compositions and nearly complete solid state immis- 
cibility was predicted. 

For spheres of very dissimilar diameters ( y  say less than 0.85) the possible formation 
of ordered solid phases must also be considered. Unfortunately, even for a specific solid 
composition, there is a very wide variety of possible crystal symmetries. On purely 
geometric grounds however, we expect crystals geometrically related to interstitial close 
packed structures to be particularly important. With large spheres in a close packed FCC 
or HCP structure at a volume fraction EcCp = 0.7405 (so that the particles are necessarily 
touching) there are octahedral holes which can accommodate spheres of diameter ratio 
0.414 and smaller tetrahedral holes that can only accommodate spheres of diameter ratio 
0.225, Occupying all of the octahedral holes, for example, gives structures geometrically 
related to either the NaCl structure, if the close packed layers are FCC, or NiAs if the 
sequence of layers is HCP. A variety of other important crystallographic structures (for 
example, wurtzite and zinc blende, see [lo]) may be derived from either complete or 
partial occupancy of the octahedral and tetrahedral interstitial sites. At melting, = 
0.545 and the lattice of the larger spheres is expanded with an increase in the size of the 
interstitial holes. The largest size of the smaller particle that can be introduced into these 
interstitial holes at = 0.545 is estimated in table 1 as y = 0.57. Although aperturbation 
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calculation [ 111 has demonstrated that the interatomic distance in the large sphere crystal 
coexisting with a fluid phase will increase upon addition of a smaller component, the 
effect is small with approximately a 1% reduction in density for y = 0.1. Molecular 
dynamics calculations [ 111 for larger diameter ratios, similarly conclude that the large 
sphere crystal cannot be stabilised to an appreciably lower density than the pure system 
by introducing a second interstitial component. Consequently hard sphere mixtures of 
diameter ratio y > 0.57 seem unlikely to form stable interstitial compounds. 

Murray and Saunders [ 121 have explored the stability of several non-interstitial 
binary structures which are geometrically related to ordered crystalline phases observed 
in metallic alloys. The authors argue that a space filling principle alone determines the 
relative stability of binary crystals with a mixture of hard spheres preferentially freezing 
into a binary structure which maximises the total packing fraction. Apart from a series 
of interstitial structures at y < 0.46, only two arrangements related to the AIB, and 
NaZn 13 structures have maximum volume fractions greater than the volume fraction Ecp 
of the separate close packed phases. For y > 0.62 both binary crystal structures are 
expected to be unstable with respect to a solid state phase separation. Parthe [13] has 
also calculated the space filling characteristics of the NaCI, ZnS, CsCl, NaTl, NiAs, WC, 
CaF, and the Laves (e.g. MgCu2) structures. For y > 0.62 none of the phases examined 
by Parthe have maximum volume fractions which exceed the monodisperse close packed 
density ECp. Consequently Murray and Saunders conclude that for y > 0.62 mixtures of 
hard spheres segregate into two pure crystalline phases. 

The prediction of large regions of solid immiscibility has been confirmed in a recent 
experimental study [ 141 of the crystallisation of mixtures of colloidal poly(methy1 meth- 
acrylate) spheres of diameter ratio y = 0.61. Colloidal suspensions prepared at either 
end of the composition range ( x ,  - 0 or x1 - 1) froze with almost complete segregation 
into crystals of each pure component. The solubility of small spheres in the crystal of 
large spheres was estimated at less than 1%. In metallic alloys this degree of solid 
immiscibility is often accompanied by the formation of a deep eutectic at which point 
the fluid freezing temperature is a minimum. The depth of this eutectic has been 
correlated with the enhanced glass forming tendency observed in metallic alloys at the 
eutectic composition [ 151. Consistent with these observations, mixtures of intermediate 
composition formed homogeneous disordered solids with dynamic structure factors 
characteristic of colloidal glasses. In a narrow range of compositions the binary com- 
pound ABl3  (where A refers to the larger colloidal species) was found although later 
experiments [ 161 have demonstrated this crystal is metastable and might be associated 
with the proximity of the experimental diameter ratio ( y  = 0.61) to the crystal phase 
boundary at y = 0.58 where Murray and Saunders [ 121 predict a stable NaZnI3 structure. 

Qualitatively similar phase behaviour has also been observed in binary suspensions 
of charged colloids although the softness of the screened Coulombic potential appro- 
priate to these systems precludes a direct comparison with hard spheres colloids. Hachisu 
et a1 [17], for example, has directly observed with light microscopy the segregation of 
1 pm poly(styrene) spheres during the crystallisation of spheres of 300 or 600 nm in 
diameter. Values for the relative number fraction were not given in this work but it is 
apparent from their photographs that the small spheres were in excess (i.e. x1 = 0). 
Lindsay and Chaikin [ 181 observed glass formation in suspensions of equal numbers of 
poly(styrene) spheres of diameters 220 and 109 nm. For the same colloidal mixture 
calculations [ 191 found no stable substitutional alloys apart from small regions of com- 
position nearxl = 0 andx, = 1. At intermediate compositions the liquid phase remained 
stable up to a higher number density in the mixture than in the individual pure sus- 
pensions consistent with the experimental observation of glass formation. 
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The purpose of this paper is to describe an approximate model for the phase behav- 
iour of hard sphere suspensions containing two different sizes of spheres. The exact form 
of the phase diagram in binary mixtures of hard spheres must await detailed numerical 
simulation studies. However since this study is principally concerned with the qualitative 
form of the phase diagram it is convenient (and as the discussion above indicates realistic 
in mixtures of diameter ratio 0.62 < y < 0.85) to assume total immiscibility of each 
species in a single solid phase. Section 2 describes in detail the methods used in the 
present calculations. Section 3 presents phase diagrams for hard sphere mixtures of 
diameter ratio y = 0.85 and 0.65. For ease of comparison with experiments on colloidal 
systems, which are normally conducted at constant volume, the phase diagrams are 
given in terms of component densities. The constant volume phase diagram contains a 
eutectic region in which the binary fluid is stable to a particularly high density. By 
correlating the enhanced fluid stability found in the eutectic region with ease of glass 
formation we predict the composition of binary suspensions which will most readily form 
colloidal glasses. Finally in section 4 we make a few concluding remarks. 

2. The model system 

We model the colloidal system by a binary mixture of hard spheres of diameters U ,  and 
u2 where we adopt the convention o1 > u2. In the following we shall assume freezing of 
a binary suspension occurs, at all compositions, with complete segregation to give stable 
FCC crystals of each pure component. In fact, recent measurements [6] have indicated 
that the actual structure of crystals of hard colloidal spheres is a strongly faulted sequence 
of hexagonal planes of particles. However it seems likely that the difference in free 
energies between this structure and FCC are very small. Indeed, several calculations [20] 
have suggested that for hard spheres the difference in free energy per particle between 
the two simplest periodic close packed structures, FCC and HCP, is of the order of 
2 x kT or less. Consequently we shall confine ourselves to considering only freezing 
into FCC crystals. The phase diagrams for freezing into the other close packed structures 
are expected to be very similar. 

At thermodynamic equilibrium, under conditions of constant temperature T and 
external pressure P ,  the chemical potential of each component is constant throughout 
all phases. A binary colloidal suspension consists of three components: the suspension 
medium (labelled as component 0) and two colloidal species (labelled as 1 and 2). To a 
good approximation the total volume of a colloidal suspension is a constant independent 
of the specific arrangement of the colloidal species. Correspondingly the partial molar 
volume of the suspension medium (v,) will be approximately identical in all colloidal 
phases. This assumption is justified by the low compressibility of the suspension medium 
compared with the corresponding ease of compression of an assembly of colloidal 
particles. The chemical potential of the suspension medium ( p 0 )  is given by the 
expression 

,U0 = p; - nv, 
where p; is the chemical potential of the suspension medium in the absence of colloidal 
particles and n is the osmotic pressure. Equation (I)  demonstrates that equality of the 
chemical potential of the suspension medium in coexisting phases is assured by conditions 
of constant osmotic pressure. 
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The osmotic pressure of a binary fluid of colloidal hard spheres may be accurately, 
but not exactly, represented by the expression of Mansoori et a1 [21]. For a fluid of N1 
particles of component 1 and N 2  particle of component 2 in a volume V f  the osmotic 
pressure (in dimensionless units) is given by 

nf Vf 1 + if + 5’ - ~ E ( Y  1 + E Y ~  1 - E3y3 
(1 - E l 3  ( N I  + N 2 ) k T =  

where if is the total volume fraction 

E =  V I  + V 2  

and x , ,  x 2  are the number fractions of big and small spheres respectively 

N2 
x2 = . X I  = 

N I  + N,’ N I  + Nz‘  

This is a generalisation to mixtures of the average of the compressibility and virial 
solutions of the Percus-Yevick integral equation which for a system of uniform hard 
spheres leads’ to the well tested Carnahan and Starling [22] equation of state. For a 
diameter ratio of y = 0.6 the equation of state of Mansoori et a1 has been tested against 
Monte Carlo and molecular dynamics simulations by Smith and Lea [23] at low densities 
and Jackson et a1 [24] at high densities. Both are in good agreement with the equation 
of state of Mansoori eta1 although small deviations were found at very high fluid densities 
E > 0.52. 

The Helmholtz free energy A, of a binary fluid of hard spheres is obtained by 
integrating the equation of state, (2). Differentiation of A, gives the chemical potential 
p j ( f )  of component i in the hard sphere fluid as 

P m  P7 2 8 ,  + 3 e 2  
kT kT 1 - E  

- + $ ( d ,  - 6’’ - Os - 1) + (0, - 1) ln(1 - E )  + 

where 8, = y, + N(dy, /dN,)  f o r j  = 1, . . 3 and p:/kT = ln[(Nl/V)(2nh2/m,kT)3’2] is the 
ideal gas (kinetic) part of ,u,(f). 

Molecular dynamics calculations of the (osmotic) pressure II, of a FCC crystal of 
volume V ,  containing N ,  uniformly sized hard spheres of diameter 0, has been para- 
metrised by Alder et a1 [25] in the form 

I I , V , / N , k T =  3 / (V*  - 1) + 2.566 + 0.55(V* - 1) - 1.19(V* - 1)2 

+ 5.95(vx - 113 (4) 
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where the reduced volume V* = Vs/Vo and V, is the close packed volume N,a ; /d2 .  
Although this expression lacks a theoretical basis, agreement between the fitted results 
and calculations is accurate to better than 0.5%. The corresponding chemical potential 
p,(s) of component i in the high density solid phase is given by the expression 

,u , ( s ) /kT=  ,u?/kT - 3 ln(V* - 1) + 9.124 In V* - 9.52V** + 3.966V*3 

+ 3V*/(V* - 1) + Co. ( 5 )  

The dimensionless integration constant CO is determined from the molecular dynamics 
calculation of the fluid-solid phase transition in a one-component system [ 5 ] .  With CO = 
6.5794, freezing occurs for volume fractions 0.4954 G qr S 0.5478 at a reduced (osmotic) 
pressure 11* = 8.431, where II* = lIVo/(N,kT), in close agreement with computer 
predictions [ 5 ] .  

With the assumption of complete immiscibility, the constant volume phase diagram 
contains a three-phase eutectic region which separates the two regions of fluid-solid 
equilibrium in which a binary fluid coexists with a single crystalline phase of either 
component 1 or 2. In the three-phase region, a fluid of eutectic composition is in 
equilibrium with both a crystalline phase of component 1 and a second crystalline phase 
of component 2. Within this region the osmotic pressure is fixed. 

In the two-phase coexistence region a binary fluid is in equilibrium with a crystal of, 
for example, component 1. The phase behaviour, at a fixed temperature, is determined 
by two equilibrium conditions between the fluid phase (characterised by the partial 
volume fractions rIcf) and r2cf)) and the crystalline phase (characterised by ql(s)), 
namely: 

4 1  = Pl(S) - h c f )  = 0 AII = II, - II, = 0. (6) 
Further relations needed arise from the conservation of the volumes of the individual 
colloid species. If R I  is the ratio of the volume of the crystalline phase of component 1 
to the volume of the system then it is easily seen that 

where q l  and q 2  are the initial partial volume fractions (before crystallisation and phase 
separation has occurred). The four equalities in (6) and (7) can now, in principle, be 
solved for the unknown variables qlcf) ,  q2cf ) ,  ql(s) and R ,  given the diameter ratio y 
and the initial volume fractions q l  and q 2 .  Rearranging (7) into the expression 

demonstrates that the set of initial states {rl, q 2 }  which at equilibrium phase separate 
into a fluid phase of partial densities {rlcf), rzCf)} and a crystalline phase of volume 
fraction q,(s)  lie on a straight line connecting the points (rlCf), q2Cf)) and (ql(s), 0). 
Equation (7) shows that by representing the phase behaviour in the ( r , ,  q 2 )  plane 
the equilibrium volume of each phase is given by the conventional inverse lever rule 
construction. 

The phase behaviour within the three phase eutectic region may be calculated by 
similar procedures. Equation (6) is now supplemented by the two equivalent conditions 
of equilibrium for a second crystalline phase consisting solely of component 2. The 
four equilibrium conditions together with the two additional relations expressing the 
conservation of volume (similar to (7)) may be solved for the six unknown variables 
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Figure 1. Phase diagrams for binary mixtures of hard spheres of diameter ratio (a )  0.85, and 
( b )  0.65. 17, and v2  are the volume fractions of species 1 (larger spheres) and species 2 
respectively. The full lines give the phase boundaries. The dashed lines represent the 
compositions of coexisting fluid and crystal phases. The eutectic fluid is marked by E. The 
labelsf, s, and s2 refer to fluid, solid phase of species 1 and the solid phase of species 2 
respectively. 

which characterise the coexisting fluid ( q  ,U), q 2 c f ) ) ,  the density of the crystalline phase 
of component 1 (ql(s)) and that of component 2 ( q z ( s ) )  and the fractional volumes of 
the crystalline phases of component 1 ( R , )  and of component 2 (R,) .  In a representation 
of the constant volume phase diagram in the (q l ,  q 2 )  plane the phase volumes R 1  and 
R,  have a simple geometric interpretation. The three phase eutectic region is represented 
by the interior of a triangle formed by linking together the three points corresponding 
to the compositions of the three coexisting phases. The volume of, for example the fluid 
phase, is proportional to the area of the internal triangle formed by joining the point 
representing the initial composition to the two vertices corresponding to the two remain- 
ing phases (crystal 1 and crystal 2). 

3. Results 

Figure 1 shows the projection on the (q l ,  q 2 )  plane of the phase diagrams for a binary 
mixture of hard spheres of diameter ratio y = 0.85 and 0.65. In these figures suspensions 
of a constant composition x1 correspond to points along a straight line radiating from 
the origin while lines which intersect both the q l  and q 2  axes at 45 degrees describe 
suspensions of constant total volume fraction E = q l  + q 2 .  Within the regions of fluid- 
solid coexistence fractionation takes place, the extent of which depends on the initial 
densities ( q l ,  q 2 )  of the suspension (before phase separation has occurred). The com- 
position of the phase separated binary fluid and crystal phases are depicted in figure 1 
by the set of dashed tie lines. To illustrate the sequence of phase behaviour consider a 
suspension of fixed compositionx which lies within the region of fluid-solid 1 coexistence 
shown in figure 1. With increasing total volume fraction 6 the suspension separates into 
a fluid which becomes progressively depleted in component 1 together with an increasing 
volume of crystal 1. The densities of the coexisting fluid and crystal phases depend both 
on the initial volume fraction E and the initial compositionxl. At  a sufficiently high total 
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Figure 2. The total volume fraction E of the fluid phase (solid line), crystals of species 1 
(dashed line) and the crystals of species 2 (dotted line) at phase coexistence for a hard sphere 
mixture of diameter ratio ( a )  0.85, and ( b )  0.65. The total volume fraction 5 of the initial 
suspension (before phase separation occurred) was fixed at the equilibrium eutectic fluid 
volumefractionof(a) E = 0.544, and(b);' = 0.533.x,isthemolarnumberfractionofspecies 
1 (larger sphere) in the initial suspension. x ;  labels the eutectic composition. 

volume fraction the composition of the equilibrium fluid phase becomes equal to the 
eutectic fluid composition (point E in figure 1) and a second crystalline phase of com- 
ponent 2 appears. With further increase in the initial volume fraction the compositions 
and densities of the three coexisting phases remain unchanged but the relative volume 
of the fluid phase shrinks. Finally suspensions of still higher total volume fraction fully 
crystallise into two solid phases. 

The calculations show that the fluid freezing volume fraction Efdepends on the initial 
compositionx, and is a maximum at the eutectic fluid composition (point E in figure 1). 
To illustrate this point more clearly figure 2 shows the densities of equilibrium phases 
formed from an initial suspension with the same total volume fraction 5 as the eutectic 
fluid as a function of initial suspension composition x, .  The maximum in the freezing 
density versus x1 curve indicates that the fluid phase remains stable to a higher density 
in the mixture than in the pure case. We shall show below that this maximum in the 
freezing density is equivalent to a minimum in the freezing temperature. The maximum 
freezing density occurs in small particle rich mixtures at a composition x ;  which 
decreases sharply with decreasing particle diameter ratio. For example at y = 0.85 the 
present calculation predicts a eutectic fluid composition of x ;  -- 0.29 while for y = 0.65 
this has reduced to xT = 0.09. 

From figure 2 it is apparent that crystals formed from a binary suspension are 
compressed relative to the pure component case. The increase in density is most marked 
for the crystal of larger spheres (component 1) and is strongly dependent on the initial 
suspension composition xl. Note that there is a maximum in the melting density 5, 
versus x ,  curve at the eutectic region demonstrating that the crystal phase becomes 
unstable at a higher density in the mixture than in the pure case. In addition the increase 
in density of the crystal of component 1 becomes more pronounced as the diameter ratio 
is progressively decreased. For example, for crystals of component 1 in the eutectic 
region, the density increases from 5 = 0.63 at a diameter ratio y = 0.85 to E -- 0.68 in 
mixtures of y = 0.65. The crystals of smaller spheres (component 2) however show the 
opposite trend. The density at the eutectic point reduces as the diameter ratio decreases 
and the composition of the eutectic fluid shifts towards x1 = 0. 

Finally we note that for hard spheres the phase behaviour is a unique function of the 
ratio of temperature to osmotic pressure. At a constant osmotic pressure Il this ratio 
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Figure 3. Reduced temperature (T*)-composition phase diagram for binary hard sphere 
mixtures of diameter ratio (a) 0.85, and ( b )  0.65. The reduced temperature is expressed in 
units of n a : / k  where u l  is the diameter of the larger sphere. x I  is the number fraction of 
larger spheres in the initial suspension. 

defines an effective temperature T” = kT/IIu: where u1 is the diameter of the larger 
sphere. In figure 3 the effective freezing temperature is plotted as afunction of suspension 
composition for mixtures of diameter ratio y = 0.85 and 0.65. This representation of the 
hard sphere phase behaviour is akin to the conventional temperature-composition phase 
diagrams commonly used in metallurgy for example. Figure 1 shows the equivalent 
constant volume representation which as the discussion above illustrates is much more 
relevant to colloidal systems. Comparison between figures 2 and 3 illustrates the cor- 
respondence between the maximum fluid freezing density found at the eutectic and the 
minimum in the equilibrium freezing temperature. 

4. Concluding remarks 

The aim of this work is to describe an approximate model for the freezing of a binary 
mixture of colloidal hard spheres. The different sized colloidal species are assumed to 
be immiscible, in all proportions, in a single crystalline phase. Freezing proceeds with 
complete segregation to give two distinct crystalline phases. The boundaries between 
the fluid and crystalline phases have been calculated from accurate statistical equations 
of state for both the binary hard sphere fluid [21] and the single component hard sphere 
crystal [25]. Calculations are reported for mixtures of diameter ratio y = 0.85 and 0.65. 
This model, although simple, contains the basic physics of the problem. All expressions 
for the chemical potentials are analytic and allow the phase behaviour to be readily 
represented either in a constant pressure or constant volume phase diagram. For col- 
loidal systems, experiment [ 141 demonstrates that the constant volume phase diagram 
is most relevant. 

The calculations indicate that the fluid phase remains stable to a higher density or 
equivalently a lower effective temperature in the mixture than in the pure case. The 
maximum freezing density occurs in a fluid of eutectic composition in which the number 
of smaller spheres exceeds the number of larger spheres. With decreasing diameter ratio 
the eutectic composition shifts towards increasingly small particle rich mixtures. The 
enhanced stability of the fluid at the eutectic suggests that a binary glass will be most 
readily formed in suspensions with the eutectic composition. The preferential formation 
of a high density glass has important practical consequences, for example, in colloidal 
ceramic processing where a high ‘green’ compact density is desired. Sintering experi- 
ments [26] on binary mixtures of spheres have demonstrated that the microstructure of 
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the ‘green’ compact is crucial to producing ceramics containing small sized defects. 
Samples with large crystalline domain boundaries developed cracks during sintering. In 
contrast disordered glassy structures sintered homogeneously to give a ceramic free of 
large flaws. 

Finally we point out that the predictions of the present model are in qualitative (and 
for several aspects quantitative) agreement with recent experiments [ 141 on the phase 
behaviour of mixtures of colloidal hard spheres. Suspensions prepared with com- 
positions either rich in component 1 (0.66 < x1 s 1.00) or rich in component 2 
(0 s x1 s 0.057)separated, at volume fractions Ef < E < Em, intoapurecrystallinephase 
and a coexisting colloidal fluid. Experimental values of the coexisting crystal density and 
phase volume were in very close accord with the predictions of the present model 
for hard spheres mixtures of diameter ratio y = 0.61. In suspensions of intermediate 
composition, close to the predicted eutectic point at x1 = 0.067, crystallisation was 
totally suppressed at all volume fractions. Although binary glasses may be formed 
at any composition (at a sufficiently high density) glass formation is expected from 
thermodynamic considerations to be easiest in the vicinity of a eutectic. The absence of 
crystallisation at intermediate compositions is therefore in qualitative agreement with 
the present prediction of the eutectic position. However, clearly to test the present 
model in greater detail will require a very careful study of a colloidal binary phase 
diagram. 
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